ON A METHOD OF SOLUTION OF INTEGRAL EQUATIONS with large values of the parameter

(OB ODNOL SPOSOBE RESGENIIA INTEGRAL' NYEH URAVNENII PRI BOL' SHOM ZNACHENII PARAMETRA)

PMM Vol.22, No.6, 1958, pp.808-809
I. A. BIRGER
(Moscow)
(Received 18 February 1957)

In engineering problems if frequently becomes necessary to solve the nonhomogeneous integral equation

$$
\begin{equation*}
y=\lambda K y+f \tag{1}
\end{equation*}
$$

when the absolute value of the parameter λ is considerably larger than the absolute value of the first characteristic value. We will assume that the function f can be expanded as a series in terms of the characteristic functions of the homogeneous equation:

$$
\begin{equation*}
f=\sum_{n=1}^{\infty} c_{n} y_{n} \quad\left(c_{n}=\left(f, y_{n}\right)=\int_{\alpha}^{b} f y_{n} h d x\right) \tag{2}
\end{equation*}
$$

The characteristic functions y_{n} are orthogonalized and normalized with a weight function $h(x)$ over the interval ($a, b)$:

$$
\left(y_{n}, y_{m}\right)=\int_{a}^{b} y_{n} y_{m} h d x= \begin{cases}0 & (n \neq m) \\ 1 & (n=m)\end{cases}
$$

In order to obtain the solution of equation (1) in the form of the infinite series

$$
\begin{equation*}
y=\sum_{n=1}^{\infty} \frac{c_{n} y_{n}}{1-\lambda / \lambda_{n}} \tag{3}
\end{equation*}
$$

It is necessary to determine a large number of characteristic functions y_{n} and the corresponding characteristic constants λ_{n}, which may involve considerable difficulties.

It is for this reason that the methods of successive approximations have found wide application.

The method of simple iteration for the equation (1) will converge only when $|\lambda|<\left|\lambda_{1}\right|$. For large values of λ it becomes necessary to use more complicated iteration processes [1], which, however, cease to be effective if $|\lambda| \gg\left|\lambda_{1}\right|$. (in oractical cases $\left.|\lambda|>10\left|\lambda_{1}\right|\right)$.

Below is given a method of solution of equation (1) which makes it possible to apply a converging method of simple iteration after a certain finite number of characteristic functions have been found.*

For the purpose of explaining the principle of the method, let us first suppose that the parameter λ is less than the second characteristic value (i.e. $\left|\lambda_{1}\right|<|\lambda|<\left|\lambda_{2}\right|$). In place of equation (1) we consider the transformed equation [1]

$$
\begin{equation*}
y=\lambda K_{2} y+f \tag{4}
\end{equation*}
$$

where

$$
K_{2} y=K y-y_{1} \int_{a}^{b} K y y_{1} h d x=K y-y_{1}\left(K y, y_{1}\right)
$$

We will solve this equation by the method of simple iteration according to the scheme

$$
\begin{equation*}
y_{(i)}=\lambda K_{2} y_{(i-1)}+f \quad(i=1,2, \ldots) \tag{5}
\end{equation*}
$$

Let us suppose that the initial $y_{(0)}$ can be represented in the form

$$
\begin{equation*}
y_{(0)}=\sum_{n=1}^{\infty} e_{n} y_{n} \tag{6}
\end{equation*}
$$

Substituting this expression in equation (5), we obtain
and

$$
y_{(1)}=c_{1} y_{1}+\sum_{n=2}^{\infty} c_{n} y_{n}+\sum_{n=2}^{\infty} \bar{\lambda}_{n} c_{n} y_{n}
$$

$$
\begin{gathered}
y_{(2)}=c_{1} y_{1}+\sum_{n=2}^{\infty} c_{n}\left(1+\frac{\lambda}{\lambda_{n}}\right) y_{n}+\sum_{n=2}^{\infty} \frac{\lambda^{2}}{\lambda_{n}^{2}} e_{n} y_{n} \\
y_{(3)}=c_{1} y_{1}+\sum_{n=2}^{\infty}{ }_{n}\left(1+\frac{\lambda}{\lambda_{n}}+\frac{\lambda^{2}}{\lambda_{n}^{2}}\right) y_{n}+\sum_{n=2}^{\infty} \frac{\lambda^{3}}{\lambda_{n}^{3}} e_{n} y_{n}, \cdots
\end{gathered}
$$

[^0]As increases, the approximations converge to the function

$$
\begin{equation*}
y^{*}=c_{1} y_{1}+\sum_{n=2}^{\infty} \frac{c_{n} y_{n}}{1-\lambda \lambda_{n}} \tag{7}
\end{equation*}
$$

which differs from the exact solution only by the first term.
The exact solution of equation (1) can now be obtained in the form

$$
\begin{equation*}
y=y^{*}+\frac{c_{1} y_{1}}{\lambda_{1} / \lambda-1} \tag{8}
\end{equation*}
$$

Taking into account equation (3) we obtain

$$
\begin{equation*}
y=y^{*}+\frac{y_{1}}{\lambda_{1} / \lambda-1} \int_{a}^{b} f y_{1} h d x \tag{9}
\end{equation*}
$$

When λ lies between the characteristic values λ_{j-1} and λ_{j} (i.e. when $\left|\lambda_{j-1}\right|<|\lambda|<\left|\lambda_{j}\right|$), we solve the equation

$$
\begin{equation*}
y=\lambda K_{j} y+j \quad\left(K_{j} y=K y-\sum_{n=1}^{j-1} y_{n}\left(K y, y_{n}\right)\right) \tag{10}
\end{equation*}
$$

by the method of simple iteration.
If y^{*} is a solution of equation (10), the solution of the original integral equation takes the form

$$
\begin{equation*}
y=y^{*}+\sum_{n=1}^{j-1} \frac{y_{n}}{\lambda_{n} / \lambda-1} \int_{a}^{b} f y_{n} h d x \tag{11}
\end{equation*}
$$

In practice, solving the problem should begin with-the successive determination of characteristic functions and characteristic values, until one finds a λ_{j} such that $\left|\lambda_{j}\right|>|\lambda|$. After this equation (10) is solved by the usual method of iteration.

The method presented is easily extended to matrix integral equations [1]

$$
[y]=\lambda\left[K^{(v)}\right][y]+[f]
$$

for which the condition of orthogonality and normalization takes the form

$$
\left(\mid y_{n}\right],\left[y_{m} \mid\right)^{(\nu)}=\int_{a}^{b} \sum_{r=0}^{\nu} y_{n}^{(r)} y_{m}^{(r)} h_{r} d x= \begin{cases}0 & (n \neq m) \\ 1 & (n=m)\end{cases}
$$

where $y_{n}(r)$ and $y_{n}(r)$ are r-th-order derivatives of the characteristic functions y_{n} and y_{k} respectively.

BIBLIOGRAPHY

1. Birger, I.A., Nekotorye matematicheskie metody reshenia inzhenernykh radach (Some Matheatical Methods of Solving Engineering Prublems). Oborongiz. 1956.

[^0]: - Independently of the author, A.F. Gurov, in his dissertation defended in 1957, used a method similar in principle to the one given here, on a problem on the vibration of a shaft.

